[1] Glick B R, Patten C L. Molecular biotechnology: principles and applications of recombinant DNA[M]. John Wiley & Sons, 2022.
[2] Legras J L, Galeote V, Bigey F, et al. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication[J]. Molecular biology and evolution, 2018, 35(7): 1712-1727.
[3] Sharifi-Rad J, Sharifi-Rad M, Salehi B, et al. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir[J]. Cellular and Molecular Biology, 2018, 64(8): 57-64.
[4] Colombo N, Sessa C, du Bois A, et al. ESMO–ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease[J]. Annals of Oncology, 2019, 30(5): 672-705.
[5] Girardi T, Vicente C, Cools J, et al. The genetics and molecular biology of T-ALL[J]. Blood, The Journal of the American Society of Hematology, 2017, 129(9): 1113-1123.
[6] Raei P, Pourlak T, Memar M Y, et al. Thymol and carvacrol strongly inhibit biofilm formation and growth of carbapene-mase-producing Gram negative bacilli[J]. Cellular and Molecular Biology, 2017, 63(5): 108-112.
[7] Xiang Y, Huang C H, Hu Y, et al. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication[J]. Molecular biology and evolution, 2017, 34(2): 262-281.
[8] Choi J Y, Platts A E, Fuller D Q, et al. The rice paradox: multiple origins but single domestication in Asian rice[J]. Molecular biology and evolution, 2017, 34(4): 969-979.
[9] Bansal S, Singh A, Mangal M, et al. Food adulteration: Sources, health risks, and detection methods[J]. Critical reviews in food science and nutrition, 2017, 57(6): 1174-1189.
[10] Halász A, Lásztity R. Use of yeast biomass in food production[M]. CRC Press, 2017.